Conferences (English)

2024

  1. Auxiliary selection: optimal selection of auxiliary tasks using deep reinforcement learning
    Hidenori Itaya, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In IIEEJ International Conference on Image Electronics and Visual Computing (IEVC), 2024
  2. Class Weighted Focal Loss for Improving Class Imbalance in Semi-supervised Object Detection
    Shinichi Hoketsu, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In International Conference on Computer Vision Theory and Applications (VISAPP), 2024
  3. Diverse Data Selection Considering Data Distribution for Unsupervised Continual Learning
    Naoto Hayashi, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In International Conference on Computer Vision Theory and Applications (VISAPP), 2024

2023

  1. Recommending Learning Actions Using Neural Network
    Hirokazu Kohama, Yuki Ban, Tsubasa Hirakawa, Takayoshi Yamashita, and 3 more authors
    In International Conference on Computers in Education, 2023
  2. BMVC
    Embedding Human Knowledge into Spatio-Temproal Attention Branch Network in Video Recognition via Temporal attention
    Saki Noguchi, Yuzhi Shi, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In British Machine Vision Conference (BMVC), 2023
  3. Data Drift Detection with KS Test using Attention Map
    Tsunemi Nitta, Yuzhi Shi, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In Asian Conference on Pattern Recognition (ACPR), 2023
  4. Single-Shot Pruning for Pre-trained Models: Rethinking the Importance of Magnitude Pruning
    Hirokazu Kohama, Hiroaki Minoura, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In ICCV Workshop on Resource Efficient Deep Learning for Computer Vision, 2023
  5. Human-like Guidance with Gaze Estimation and Classification-based Text Generation
    Masaki Nambata, Kota Shimomura, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In IEEE International Conference on Intelligent Transportation Systems (ITSC), 2023
  6. Visual Explanation for Cooperative Behavior in Multi-Agent Reinforcement Learning
    Hidenori Itaya, Tom Sagawa, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In International Joint Conference on Neural Networks (IJCNN), 2023
  7. Analyzing the Accuracy, Representations, and Explainability of Various Loss Functions for Deep Learning
    Tenshi Ito, Hiroki Adachi, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In International Joint Conference on Neural Networks (IJCNN), 2023
  8. Potential Risk Estimation with Single Monocular Camera
    Kota Shimomura, Hiroki Adachi, Tsubasa Hirakawa, Takayoshi Yamashita, and 3 more authors
    In CVPR workshop on Secure and Safe Autonomous Driving (SSAD), 2023
  9. Learning from AI: An Interactive Learning Method Using a DNN Model Incorporating Expert Knowledge as a Teacher
    Kohei Hattori, Hironobu Fujiyoshi, Takayoshi Yamashita, and Tsubasa Hirakawa
    In International Conference on Artificial Intelligence in Education (AIED), 2023
  10. ICLR
    This Looks Like It Rather Than That: ProtoKNN For Similarity-Based Classifiers
    Yuki Ukai, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In International Conference on Learning Representations (ICLR), 2023
  11. Complement Objective Mining Branch for Optimizing Attention Map
    Takaaki Iwayoshi, Hiroki Adachi, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In International Conference on Computer Vision Theory and Applications (VISAPP), 2023
  12. Masking and Mixing Adversarial Training
    Hiroki Adachi, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi, and 2 more authors
    In International Conference on Computer Vision Theory and Applications (VISAPP), 2023
  13. Understanding of Feature Representation in Convolutional Neural Networks and Vision Transformer
    Hiroaki Minoura, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In International Conference on Computer Vision Theory and Applications (VISAPP), 2023
  14. 1D-SalsaSAN: Semantic Segmentation of LiDAR Point Cloud with Self-Attention
    Takahiro Suzuki, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In International Conference on Computer Vision Theory and Applications (VISAPP), 2023

2022

  1. Solving the Deadlock Problem with Deep Reinforcement Learning Using Information from Multiple Vehicles
    Tsuyoshi Goto, Hidenori Itaya, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In IEEE Intelligent Vehicles Symposium (IV), 2022
  2. Quantification of mimicry resemblance in butterflies using feature extractor of deep neural network
    Kai Amino, Tsubasa Hirakawa, Masaya Yago, and Takashi Matsuo
    In Congress of Europian Society for Evolutionary Biology (ESEB), 2022
  3. Forest-Related SDG Issues Monitoring for Data-Scarce Regions Employing Machine Learning and Remote Sensing - A Case Study for Ena City, Japan
    Anh Phan, Kiyoshi Takejima, Tsubasa Hirakawa, and Hiromichi Fukui
    In IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2022
  4. Collision Prediction and Visual Explanation Generation Using Structural Knowledge in Object Placement Tasks
    Haruka Matsuo, Shumpei Hatahaka, Arisa Ueda, Tsubasa Hirakawa, and 3 more authors
    In IROS, late breaking results poster, 2022
  5. ACCV
    Visual Explanation Generation Based on Lambda Attention Branch Networks
    Tsumugi Iida, Takumi Komatsu, Kanta Kaneda, Tsubasa Hirakawa, and 3 more authors
    In Asian Conference on Computer Vision (ACCV), 2022
  6. ECCV
    Deep Ensemble Learning by Diverse Knowledge Distillation for Fine-Grained Object Classification
    Naoki Okamoto, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In European Conference on Computer Vision, 2022
  7. Class-Wise FM-NMS for Knowledge Distillation of Object Detection
    Lyuzhuang Liu, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In IEEE International Conference on Image Processing (ICIP), 2022
  8. Action Spotting in Soccer Videos Using Multiple Scene Encoders
    Yuzhi Shi, Hiroaki Minoura, Takayoshi Yamashita, Tsubasa Hirakawa, and 4 more authors
    In International Conference on Pattern Recognition (ICPR), 2022
  9. Refining Design Spaces in Knowledge Distillation for Deep Collaborative Learning
    Sachi Iwata, Soma Minami, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In International Conference on Pattern Recognition (ICPR), 2022

2021

  1. Performance Prediction and Importance Analysis Using Transformer
    Akiyoshi Satake, Hironobu Fujiyoshi, Takayoshi Yamashita, Tsubasa Hirakawa, and 1 more author
    In International Conference on Computers in Education Conference (ICCE), 2021
  2. 1D Self-Attention Network for Point Cloud Semantic Segmentation Using Omnidirectional LiDAR
    Takahiro Suzuki, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In Asian Conference on Pattern Recognition (ACPR), 2021
  3. Super-Class Mixup for Adjusting Training Data
    Shungo Fujii, Naoki Okamoto, Toshiki Seo, Tsubasa Hirakawa, and 2 more authors
    In Asian Conference on Pattern Recognition (ACPR), 2021
  4. IROS
    Iterative Coarse-to-Fine 6D-Pose Estimation Using Back-propagation
    Ryosuke Araki, Kohsuke Mano, Tadanori Hirano, Tsubasa Hirakawa, and 2 more authors
    In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021
  5. Multi-Domain Semantic-Segmentation using Multi-Head Model
    Shota Masaki, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In IEEE International Intelligent Transportation Systems Conference (ITSC), 2021
  6. Semantic Segmentation And Change Detection By Multi-Task U-Net
    Shungo Tsutsui, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In IEEE International Conference on Image Processing (ICIP), 2021
  7. Action Spotting and Temporal Attention Analysis in Soccer Videos
    Hiroaki Minoura, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi, and 3 more authors
    In International Conference on Machine Vision and Applications (MVA), 2021
  8. Attention Mining Branch for Optimizing Attention Map
    Takaaki Iwayoshi, Masahiro Mitsuhara, Masayuki Takada, Tsubasa Hirakawa, and 2 more authors
    In International Conference on Machine Vision and Applications (MVA), 2021
  9. Relational Subgraph for Graph-based Path Prediction
    Masaki Miyata, Katsutoshi Shiraki, Hiroaki Minoura, Tsubasa Hirakawa, and 2 more authors
    In International Conference on Machine Vision and Applications (MVA), 2021
  10. Visual Explanation using Attention Mechanism in Actor-Critic-based Deep Reinforcement Learning
    Hidenori Itaya, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi, and 1 more author
    In International Joint Conference on Neural Networks (IJCNN), 2021
  11. Image Captioning for Near-Future Events from Vehicle Camera Images and Motion Information
    Yuki Mori, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In IEEE Intelligent Vehicles Symposium (IV), 2021
  12. 3D Object Detection with Normal-map on Point Clouds
    Jishu Miao., Tsubasa Hirakawa., Takayoshi Yamashita., and Hironobu Fujiyoshi.
    In VISAPP, 2021
  13. Embedding Human Knowledge into Deep Neural Network via Attention Map
    Masahiro Mitsuhara., Hiroshi Fukui., Yusuke Sakashita., Takanori Ogata., and 3 more authors
    In VISAPP, 2021
  14. Collaborative Learning of Generative Adversarial Networks
    Takuya Tsukahara, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In VISAPP, 2021

2020

  1. Correction of Seasonal Effects on VIIRS DNB Monthly Composites by Using Stable Lit Data and Regression Convolutional Neural Network
    Chuc Man Duc, Tsubasa Hirakawa, and Hiromichi Fukui
    In IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2020
  2. Improving reliability of attention branch network by introducing uncertainty
    Takuya Tsukahara, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In International Conference on Pattern Recognition (ICPR), 2020
  3. ACCV
    Knowledge Transfer Graph for Deep Collaborative Learning
    Soma Minami, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In Asian Conference on Computer Vision (ACCV), 2020
  4. ACCV
    Spatial Temporal Attention Graph Convolutional Networks with Mechanics-Stream for Skeleton-Based Action Recognition
    Katsutoshi Shiraki, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In Asian Conference on Computer Vision (ACCV), 2020
  5. Video Object Detection and Tracking based on Angle Consistency between Motion and Flow
    Toshiki Seo, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In IEEE Intelligent Vehicles Symposium (IV), 2020
  6. ICRA
    MT-DSSD: Deconvolutional Single Shot Detector Using Multi Task Learning for Object Detection, Segmentation, and Grasping Detection
    Ryosuke Araki, Takeshi Onishi, Tsubasa Hirakawa, Takayoshi Yamashita, and 1 more author
    In IEEE International Conference on Robotics and Automation (ICRA), 2020
  7. Simultaneous Visual Context-aware Path Prediction
    Haruka Iesaki, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi, and 3 more authors
    In VISAPP, 2020
  8. Acquisition of Optimal Connection Patterns for Skeleton-based Action Recognition with Graph Convolutional Networks
    Katsutoshi Shiraki., Tsubasa Hirakawa., Takayoshi Yamashita., and Hironobu Fujiyoshi.
    In VISAPP, 2020

2019

  1. Coarse-to-Fine Deep Orientation Estimator for Local Image Matching
    Yasuaki Mori, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In Asian Conference on Pattern Recognition (ACPR), 2019
  2. Attention Neural Baby Talk: Captioning of Risk Factors while Driving
    Yuki Mori, Hiroshi Fukui, Tsubasa Hirakawa, Jo Nishiyama, and 2 more authors
    In IEEE Intelligent Transportation Systems Conference (ITSC), 2019
  3. Automatic Creation of Path Information on Digital Map
    Haruka Iesaki, Shuhei Naruse, Tsubasa Hirakawa, Takayoshi Yamashita, and 2 more authors
    In IEEE Intelligent Transportation Systems Conference (ITSC), 2019
  4. Adaptive Selection of Auxiliary Tasks in UNREAL
    Hidenori Itaya, Tsubasa Hirakawa, Takayoshi Yamasita, and Hironobu Fujiyoshi
    In IJCAI Workshop on 2nd Scaling-Up Reinforcement Learning (SURL), 2019
  5. CVPR
    Attention Branch Network: Learning of Attention Mechanism for Visual Explanation
    Hiroshi Fukui, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In Computer Vision and Pattern Recognition (CVPR), 2019
  6. Visual Explanation by Attention Branch Network for End-to-end Learning-based Self-driving
    Keisuke Mori, Hiroshi Fukui, Takuya Murase, Tsubasa Hirakawa, and 2 more authors
    In IEEE Intelligent Vehicles Symposium (IV), 2019
  7. Scene Context-aware Rapidly-exploring Random Trees for Global Path Planning
    Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi
    In International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2019
  8. Path Predictions using Object Attributes and Semantic Environment
    Hiroaki Minoura., Tsubasa Hirakawa., Takayoshi Yamashita., and Hironobu Fujiyoshi.
    In International Conference on Computer Vision Theory and Applications (VISAPP), 2019
  9. Improved Activity Forecasting for Generating Trajectories
    Daisuke Ogawa, Toru Tamaki, Tsubasa Hirakawa, Bisser Raytchev, and 2 more authors
    In The Korea-Japan joint workshop on Frontiers of Computer Vision (FCV), 2019

2018

  1. Survey on Vision-Based Path Prediction
    Tsubasa Hirakawa, Takayoshi Yamashita, Toru Tamaki, and Hironobu Fujiyoshi
    In International Conference on Human-Computer Interaction (HCII), 2018

2017

  1. Travel Time-Dependent Maximum Entropy Inverse Reinforcement Learning for Seabird Trajectory Prediction
    Tsubasa Hirakawa, Takayoshi Yamashita, Ken Yoda, Toru Tamaki, and 1 more author
    In Asian Conference on Pattern Recognition (ACPR), 2017

2016

  1. Discriminative Subtree Selection for NBI Endoscopic Image Labeling
    Tsubasa Hirakawa, Toru Tamaki, Takio Kurita, Bisser Raytchev, and 7 more authors
    In ACCV workshop on Mathematical and Computational Methods in Biomedical Imaging and Image Analysis, 2016
  2. Transfer Learning for Endoscopic Image Classification
    Shoji Sonoyama, Toru Tamaki, Tsubasa Hirakawa, Bisser Raytchev, and 5 more authors
    In The Korea-Japan joint workshop on Frontiers of Computer Vision (FCV), 2016
  3. Computer-Aided Colorectal Tumor Classification in NBI Endoscopy Using CNN Features
    Tamaki Toru, Shoji Sonoyama, Tsubasa Hirakawa, Bisser Raytchev, and 5 more authors
    In The Korea-Japan joint workshop on Frontiers of Computer Vision (FCV), 2016

2015

  1. Transfer learning for Bag-of-Visual words approach to NBI endoscopic image classification
    Shoji Sonoyama, Tsubasa Hirakawa, Toru Tamaki, Takio Kurita, and 6 more authors
    In IEEE Engineering in Medicine and Biology Society (EMBC), 2015
  2. Trade-off between speed and performance for colorectal endoscopic NBI image classification
    Shoji Sonoyama, Toru Tamaki, Tsubasa Hirakawa, Bisser Raytchev, and 5 more authors
    In SPIE Medical Imaging, 2015

2014

  1. SVM-MRF segmentation of colorectal NBI endoscopic images
    Tsubasa Hirakawa, Tom Tamaki, Bisser Raytchev, Kazufumi Kaneda, and 4 more authors
    In IEEE Engineering in Medicine and Biology Society (EMBC), 2014

2013

  1. Smoothing posterior probabilities with a particle filter of dirichlet distribution for stabilizing colorectal NBI endoscopy recognition
    Tsubasa Hirakawa, Toru Tamaki, Bisser Raytchev, Kazufumi Kaneda, and 6 more authors
    In IEEE International Conference on Image Processing (ICIP), 2013
  2. Labeling colorectal NBI zoom-videoendoscope image sequences with MRF and SVM
    Tsubasa Hirakawa, Toru Tamaki, Bisser Raytchev, Kazufumi Kaneda, and 6 more authors
    In IEEE Engineering in Medicine and Biology Society (EMBC), 2013